

MODULE SPECIFICATION PROFORMA

Module Code:	ENG736		
Module Title: Analysis of Renewable & Sustainable Systems			
Level:	7	Credit Value:	20
Cost Centre(s):	GSAC	JACS3 code:	H220

School: Applied Science, Computing & Engineering Module Leader: David Sprake
--

Placement Module duration (total hours)	0 hrs
Guided independent study	160 hrs
Scheduled learning and teaching hours	40 hrs

Programme(s) in which to be offered (not including exit awards)		Option
MSc Engineering (Renewable & Sustainable Energy)	~	

Pre-requisites	
N/A	

Office use only

Initial approval: 19/06/2018 With effect from: 01/09/2018 Date and details of revision:

Version no:1

Version no:

Module Aims

- Provide an up to date critical analysis of a variety of renewable sources and the engineering skills associated with modelling, selecting, designing and installing the apparatus to capture its energy and convert it into useful forms.
- Analyse sustainable energy reduction systems in terms of economics, engineering and social issues.
- Critically analyse the long-term environmental, socio-economic and political issues surrounding renewable energy supply and demand.
- Develop initiative, creativity and entrepreneurship to encourage students to solve complex problems and become successful future contributors to the industry.

Intended Learning Outcomes

Key skills for employability

- KS1 Written, oral and media communication skills
- KS2 Leadership, team working and networking skills
- KS3 Opportunity, creativity and problem solving skills
- KS4 Information technology skills and digital literacy
- KS5 Information management skills
- KS6 Research skills
- KS7 Intercultural and sustainability skills
- KS8 Career management skills
- KS9 Learning to learn (managing personal and professional development, selfmanagement)
- KS10 Numeracy

At	the end of this module, students will be able to	Key Skills		
1	Critically analyse ways in which renewable sources can be	KS5	KS7	
	analysed and modelled to predict energy production in a	KS10		
	variety of situations.			
2	Critically model the economic and environmental systems of renewable energy exploitation in comparison to fossil fuel and	KS5	KS3	
		KS7		
	nuclear energy production.			
3	Apply knowledge to select optimum engineering solutions for	KS3	KS6	
		KS7		
	different situations.			
	Report clearly, critically, and comprehensively on current research into renewable or sustainable systems and their	KS1	KS6	
4		KS4	KS7	
	problems in real world scenarios.			
	Research and analyse a sustainable or renewable energy	KS1	KS2	
5		KS3	KS6	
	system to produce a complex solution for a real world problem.	KS8		
Tra	Transferable skills and other attributes			

- 1. Communication
- 2. ICT Technologies
- 3. Time management and organisation
- 4. Interpersonal skills
- 5. Problem solving
- 6. Information handling including numeracy

Derogations

Credits shall be awarded by an assessment board for those Level 7 modules in which an overall mark of at least 50% has been achieved with a minimum mark of 40% in each assessment element.

Assessment:

Indicative Assessment Tasks:

Examination (50%) Coursework (50%) Students will be asked to

Coursework (50%) Students will be asked to analyse a renewable and/or sustainability problem and produce a solution.

Assessment number	Learning Outcomes to be met	Type of assessment	Weighting (%)	Duration (if exam)	Word count (or equivalent if appropriate)
1	1, 2, 3	Examination	50	2 hrs	
2	4,5	Coursework	50	N/A	2000

Learning and Teaching Strategies:

A series of workshop style lectures with student-led seminars and small group activities. Directed learning using library and internet resources will be facilitated using Moodle.

Syllabus outline:

- Why renewable energy and sustainability?
- Energy resources overview: Comparative evaluation of present UK/ worldwide energy mix and sustainability. Energy security. Primary energy, fossil fuels, renewables, nuclear power. Supply and demand issues. The effects of the variability of power from renewable energy sources.
- Resource understanding: Relative abundance of natural energy and its sources. Renewable energy supply vs. demand modelling and the importance of storage.
- Prediction of potential energy. Types. Environmental considerations. Theoretical and practical design considerations. Planning. Selection. Real world case studies with associated problems and solutions. To cover:
 - Wind Energy.
 - \circ Hydro power.

- Wave energy.
- Tidal power.
- Solar Thermal.
- Solar Photovoltaic.
- The economic value of renewable energy: Modelling economic systems for sustainability and renewable energy and the factors effecting its sale.
- Environment. Critical evaluation of environmental factors and issues surrounding fossil fuel, nuclear and renewable energy production.
- Future Scenarios: Mapping energy futures: Energy scenarios, scenarios as policy tools.

Indicative Bibliography:

Essential reading

Everett, B. (2012), Energy Systems and Sustainability: Power for a Sustainable Future. 2nd ed . Oxford: Oxford University Press.

Other indicative reading

David J.C. MacKay (2008) Sustainable Energy - Without the Hot Air (Download free http://www.withouthotair.com/)

Boyle, G. (2012) Renewable Energy: Power for a Sustainable Future. Oxford University Press

Sorensen, B. (2017), Renewable Energy: Physics, Engineering, Use, Environmental Impacts, Economy and Planning Aspects. 5th ed. Burlington, MA: Elsevier.

Murray, B. (2009) Power Markets and Economics: Energy Costs, Trading, Emissions: Structure, Costs, Operation(John Wiley & Sons Ltd)

Internet sources and government documents:

http://2050-calculator-tool.decc.gov.uk/pathways//primary_energy_chartglobalcalculator.org

http://www.decc.gov.uk/ www.ipcc.ch/ http://www.tyndall.ac.uk http://www.ofgem.gov.uk http://www.energyinst.org.uk/ http://www.iea.org/ http://www.worldenergy.org/